A Mixed Finite Element Method for Plasticity Problems with Hardening
نویسندگان
چکیده
منابع مشابه
A Mixed Finite Element Method for Constraining
The contribution of our paper is to present a mixed finite element method for 4 estimation of the velocity in the optical flow constraint, i.e., an advection equation. The resulting 5 inverse problem is well-known to be undetermined because the velocity vector cannot be recovered 6 from the scalar field advected unless further restrictions on the flow, or motion are imposed. If 7 we suppose, fo...
متن کاملStopping Criteria for Mixed Finite Element Problems
Abstract. We study stopping criteria that are suitable in the solution by Krylov space based methods of linear and non linear systems of equations arising from the mixed and the mixed-hybrid finite-element approximation of saddle point problems. Our approach is based on the equivalence between the Babuška and Brezzi conditions of stability which allows us to apply some of the results obtained i...
متن کاملMixed Finite Element Methods for Elliptic Problems*
This paper treats the basic ideas of mixed finite element methods at an introductory level. Although the viewpoint presented is that of a mathematician, the paper is aimed at practitioners and the mathematical prerequisites are kept to a minimum. A classification of variational principles and of the corresponding weak formulations and Galerkin methods—displacement, equilibrium, and mixed—is giv...
متن کاملA mixed multiscale finite element method for elliptic problems with oscillating coefficients
The recently introduced multiscale finite element method for solving elliptic equations with oscillating coefficients is designed to capture the large-scale structure of the solutions without resolving all the fine-scale structures. Motivated by the numerical simulation of flow transport in highly heterogeneous porous media, we propose a mixed multiscale finite element method with an over-sampl...
متن کاملMixed Finite Element Methods for Problems with Robin Boundary Conditions
We derive new a-priori and a-posteriori error estimates for mixed nite element discretizations of second-order elliptic problems with general Robin boundary conditions, parameterized by a non-negative and piecewise constant function ε ≥ 0. The estimates are robust over several orders of magnitude of ε, ranging from pure Dirichlet conditions to pure Neumann conditions. A series of numerical expe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 1977
ISSN: 0036-1429,1095-7170
DOI: 10.1137/0714037